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Using the Hamilton-Jacobi-Bellman equation, we derive both a Keynes-Ramsey
rule and a closed form solution for an optimal consumption-investment problem
with labor income. The utility function is unbounded and uncertainty stems from
a Poisson process. Our results can be derived because of the proofs presented in
the accompanying paper by Sennewald (2006). Additional examples are given
which highlight the correct use of the Hamilton-Jacobi-Bellman equation and the
change-of-variables formula (sometimes referred to as ‘‘Itô’s Lemma’’) under
Poisson uncertainty.
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Introduction

Poisson processes as a source of uncertainty are a standard tool for
modeling rare and randomly occurring events. These processes can be
found, among others, in quality-ladder models of growth (e.g., Gross-
man and Helpman, 1991; Aghion and Howitt, 1992; 1998), in the en-
dogenous fluctuations and growth literature with uncertainty (e.g.,
Wälde, 2005; Steger, 2005), in the labor market matching literature
(e.g., Moen, 1997), in monetary economics (e.g., Kiyotaki and Wright,
1991), and in finance (e.g., Merton, 1971). In most cases Poisson
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processes affect the concerned variables through a stochastic differential
equation (SDE). The two ‘‘major tools’’ required when working with
SDEs are the change-of-variables formula (CVF), as a ‘‘rule’’ for
computing the differential of functions of stochastic processes, and, in
so far as optimal control is concerned, the Hamilton-Jacobi-Bellman
(HJB) equation.1

CVFs for SDEs driven by Poisson processes are provided by many
textbooks in economics. They might, however, be inappropriate for the
use in economic modeling. As will be discussed in detail at the end of
Subsect. 2.1, they either apply to one-dimensional processes with only
one source for jump uncertainty or they do not provide the exact
stochastic differential after a mapping. Sennewald (2006) presents
therefore a CVF that can be applied on mappings of multidimensional
SDEs with many Poisson processes and that leads to the exact dif-
ferential.

Despite the widespread use, applying the HJB equation as a ne-
cessary or sufficient criterion for optimality has required so far a set of
restrictive or simplifying assumptions. In particular, the boundedness of
the instantaneous utility (or cost) function and of the coefficients in the
constraint, which is given as a SDE, has been in most cases indis-
pensable for the use of the HJB equation as a necessary criterion, see,
e.g., Gihman and Skorohod (1972) or Dempster (1991). Other authors
as, e.g., Kushner (1967) require, instead of this boundedness condition,
the value function to be contained in the domain of the infinitesimal
generator of the controlled process.2 However, both conditions are not
convenient for economic modeling since, on the one hand, in most
cases neither utility and cost functions nor the constraint’s coefficients
are bounded and, on the other, to check whether the value function
belongs to the mentioned domain requires in general a lot of calcu-
lation. To solve this problem, Sennewald (2006) shows that the HJB

1 Some readers may know the CVF better under the term Itô’s Lemma and the
HJB equation under the name Bellman equation, which are the corresponding
notations for frameworks with Brownian motion.
2 The domain of the infinitesimal generator of a process X tð Þ consists of

all once continuously differentiable function V for that the limit
lim
h&0

EtV X t þ hð Þð Þ � V X tð Þð Þ½ �=t exist.

2 K. Sennewald and K. Wälde
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equation can still be used as a necessary criterion for optimality if,
instead of boundedness, only linear boundedness is assumed.3 Apart
from a terminal condition, no boundedness condition is required at all
for deriving the sufficiency of the HJB equation.

The present paper accompanies the rigorous proofs in Sennewald
(2006) and is directed at the applied model builder. It presents examples
for the application of CVF and the HJB equation. These examples should
allow to work with Poisson uncertainty in other setups as well. Both
papers have the intention to encourage a more widespread use of Poisson
processes under more general assumptions concerning the economic en-
vironment.

After presenting versions of CVF in the subsequent section, we provide
some applications for it: A derivation of a household’s budget constraint
and of a HJB equation for an optimum-consumption problem. In Sect. 3,
we present a typical maximization problem, consisting in determining a
household’s optimal consumption and investment behavior in the pre-
sence of a deterministic flow of labor income. We use the HJB equation to
derive both a Keynes-Ramsey rule and a closed form solution. Based on
that result, we provide through a mean preserving spread a concise dis-
cussion on how uncertainty affects the expected consumption growth and
distinguish between the precautionary saving and reallocation mechan-
ism. The quantitative effect of either mechanism is stated explicitly. A
simple method how to achieve a mean preserving spread in a Poisson
setting is presented as well.

The maximization problem in Sect. 3 extends a ‘‘standard’’ optimum
consumption and portfolio problem as considered by, e.g., Merton (1969;
1971) and Aase (1984) by allowing for labor income in a Poisson fra-
mework. Merton (1971) derives a solution including wages when un-
certainty of the risky investment is modeled by Brownian motion. Aase
(1984) extends Merton’s model by introducing random jumps. But even
though he gives hints on how to proceed if wages as an additional source
of income are taken into account, no solution for this case is presented.

3 Note that, if the value function is sufficiently smooth, the boundedness
assumptions are sufficient for the value function to be in the domain of the
infinitesimal generator. Sennewald (2006) shows implicitly that this property
holds also for the more general case with linearly bounded utility and coefficients.

‘‘Itô’s Lemma’’ and the Bellman Equation 3
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Keynes-Ramsey rules have been derived before, e.g., by Cass (1965)
and Koopmans (1965) in a deterministic growth model, by Turnovsky
(2000) in a model of stochastic growth with Brownian motion, by Steger
(2005) in an AK-type growth model with jumps, or by Waelde (1999b) for
an optimum-consumption problem similar to the one presented here.
There are two crucial differences compared to Wälde (1999b). First,
Wälde focuses on risky R&D which implies a return of minus one when
R&D is not successful. We follow the ‘‘tradition’’ of Merton and assume
that the risky asset yields at least a certain deterministic return. Second
and crucial for results, we allow for two assets, a risky and a riskless one.
The Keynes-Ramsey rule for this setup impressively demonstrates the
simplifying nature of allowing for a second asset: While in one-asset cases
the Keynes-Ramsey rule contains terms which are hard to work with (the
derivative of consumption with respect to wealth – the marginal pro-
pensity to consume out of wealth – for Brownian motion or the post-jump
consumption level for Poisson uncertainty), this is not the case when there
is a second asset. The post-jump consumption level can here be expressed
as a function of current consumption and parameters. Consumption jumps
are therefore known and the Keynes-Ramsey rule becomes as straight-
forward to work with as deterministic Keynes-Ramsey rules.

This Keynes-Ramsey rule shows that increasing uncertainty always
reduces average, i.e., expected consumption growth. In a two-asset model
of growth with Brownian motion as noise, Obstfeld (1994) arrives at a
similar result. In an AK model of growth with Poisson uncertainty, Steger
(2005) finds that the response of the average consumption growth on
higher risk is ambiguous and depends on the household’s risk aversion.
We reconcile Steger’s with Obstfeld’s findings: Steger’s one-asset case
only induces a precautionary saving effect. In our setup with two assets,
the reallocation effect always dominates the precautionary savings effect.

2 Change of Variables Formula (‘‘Itô’s Lemma’’)

This section first presents various versions of CVF, which is a ‘‘rule’’ for
computing the differential of functions of stochastic processes, and in-
cludes a discussion why other CVFs presented by standard textbooks as,
e.g., Malliaris and Brock (1982), might not be appropriate for the use in
economic modeling. The second and third subsection provide typical
applications of the CVF by showing how the budget constraint of a
household can be derived via CVF. The fourth subsection shows how the

4 K. Sennewald and K. Wälde
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HJB equation for a simple household’s maximization problem is heur-
istically obtained, also by using CVF.

2.1 A Proposition and Three Corollaries

In the following we deal with one- or multi-dimensional stochastic pro-
cesses x tð Þ that, starting at time t0 in x t0ð Þ, obey SDEs of the form:

dx tð Þ ¼ a t; x tð Þð Þdt þ
Xm

k¼1
bkðt; x t�ð ÞÞdqk tð Þ; x t0ð Þ 2 Rn; ð1Þ

where a;b1; . . . ; bm : 0;1½ Þ � Rn ! Rn are non-stochastic continuous
vector functions and q1; . . . ; qm independent Poisson processes starting at
t0 > 0.4;5 The process x tð Þ is a so called cádlág process. The expression
cádlág is an acronym from the french ‘‘continu a droite, limites a
gauche’’. That is, the paths of x tð Þ are continuous from the right with left
limits. The left limit is denoted by x t�ð Þ � lim

s"t
x sð Þ. Thus, due to the

continuity of the bk , the left limit of bkðt; x tð ÞÞ is given by bkðt; x t�ð ÞÞ. At
first glance, it might appear strange that one uses the left limit bk t; x t�ð Þð Þ
instead of bk t; x tð Þð Þ as integrand in SDE (1). But beyond analytical
reasons, there is a simple intuitive explanation why this should be like
this. When a Poisson process qk tð Þ jumps, i.e., dqk tð Þ ¼ 1, then x tð Þ
jumps from x t�ð Þ to x tð Þ, where the jump size is given by bk. It would not
make much sense if the jump size depended on the post-jump state x tð Þ. It
is rather convenient to assume that the jump size is determined by the
state just before the jump occurs – which is formally x t�ð Þ. Thus, the
jump size itself is then given by bk t; x t�ð Þð Þ.

Our main statement on CVF, presented in the following proposition, is
taken from Sennewald (2006, Theorem 1).

Proposition 1 (Multi-dimensional stochastic process): Consider the
n-dimensional stochastic process x tð Þ ¼ x1 tð Þ; . . . ; xn tð Þð ÞT following
SDE (1). That is, each component obeys

4 The differentials have to be read componentwise, i.e., bk t; x t�ð Þð Þdqk tð Þ ¼
b1k t; x t�ð Þð Þdqk tð Þ

..

.

bnk t; x t�ð Þð Þdqk tð Þ

0
B@

1
CA:

5 A detailed analysis of SDEs with Poisson processes can be found in, e.g.,
Protter (1995) and Garcia and Griego (1994).

‘‘Itô’s Lemma’’ and the Bellman Equation 5



www.manaraa.com

dxi tð Þ ¼ ai t; x tð Þð Þdt þ
Xm

k¼1
bik t; x t�ð Þð Þdqk tð Þ; i ¼ 1; . . . ; n; ð2Þ

where ai; bik : 0;1½ Þ � Rn ! R. For a once continuously differentiable
function f : 0;1½ Þ � Rn ! R, the differential of the process f t; x tð Þð Þ is
given by

df t; x tð Þð Þ ¼ ft t; x tð Þð Þ þ
Xn

i¼1
fxi t; x tð Þð Þai t; x tð Þð Þ

" #
dt

þ
Xm

k¼1
f t; x t�ð Þ þ bk t; x t�ð Þð Þð Þ � f t; x t�ð Þð Þ½ �dqk tð Þ;

where ft and fxi , i ¼ 1; . . . ; n, denote the partial derivatives of f with
respect to t and xi, respectively, and bk stands as in SDE (1) for the n-
dimensional vector function b1k; . . . ; bnkð ÞT .

Intuitively speaking, the differential of a function is given by the
‘‘normal terms’’, i.e., the partial derivatives with respect to its first ar-
gument t and with respect to x1; . . . ; xn times changes per unit of time
(1 for the first argument and ai t; x tð Þð Þ for each component xi) times dt,
and by a ‘‘jump term’’. Whenever a process qk tð Þ jumps, each xi increases
by bik t; x t�ð Þð Þ, and the function jumps thus from f t; x t�ð Þð Þ to
f t; x tð Þð Þ ¼ f t; x t�ð Þ þ bk t; x t�ð Þð Þð Þ.

The cádlág property of f t; x tð Þð Þ holds trivially for all continuous
functions f , and we therefore do not mention it anymore in the following
corollaries.

Corollary 1 (A deterministic and a stochastic differential with many in-
dependent Poisson processes qk tð Þ): Consider two one-dimensional
processes x tð Þ and y tð Þ given by the deterministic differential
dx tð Þ ¼ ax t; x tð Þ; y tð Þð Þdt and SDE

dy tð Þ ¼ ay t; x tð Þ; y tð Þð Þdt þ
Xm

k¼1
bk t; x tð Þ; y t�ð Þð Þdqk tð Þ;6

6 Observe that x tð Þ possesses continuous paths and thus x t�ð Þ ¼ x tð Þ.

6 K. Sennewald and K. Wälde
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respectively. Then, for a once continuously differentiable function
f : 0;1½ Þ � R2 ! R, the process f t; x tð Þ; y tð Þð Þ follows:

df
�
t; x
�
t
�
; y
�
t
��
¼
�

ft; x
�
t
�
; y
�
t
��
þ fx

�
t; x
�
t
�
; y
�
t
��

ax
�
t; x
�
t
�
; y
�
t
��

þfy
�
t; x
�
t
�
; y
�
t
��

ay
�
t; x
�
t
�
; y
�
t
��

�
dt

þ
Xm

k¼1

�
f
�
t; x
�
t
�
; y
�
t�
�
þ bk

�
t; x
�
t
�
; y
�
t�
���

� f
�
t; x
�
t
�
; y
�
t�
���

dqk
�
t
�
;

where fx and fy stand for the partial derivatives of f with respect to x and
y, respectively.

Again, the differential of f is given by the ‘‘normal terms’’ and by a
‘‘jump term’’. Whenever any of the processes qk tð Þ jumps, y tð Þ increases
by bk t; x tð Þ; y t�ð Þð Þ and the function jumps from f t; x tð Þ; y t�ð Þð Þ to
f t; x tð Þ; y t�ð Þ þ bk t; x tð Þ; y t�ð Þð Þð Þ. Obviously, as dx tð Þ has no jump
term, x tð Þ does not jump. The following corollary presents a two-di-
mensional special case in which each component is driven by its ‘‘own’’
Poisson process.

Corollary 2 (two stochastic processes): Consider the one-dimensional
stochastic processes x tð Þ and y tð Þ given by

dx tð Þ ¼ ax t; x tð Þ; y tð Þð Þdt þ bx t; x t�ð Þ; y t�ð Þð Þdqx tð Þ;
dy tð Þ ¼ ay t; x tð Þ; y tð Þð Þdt þ by t; x t�ð Þ; y t�ð Þð Þdqy tð Þ:

For a once continuously differentiable function f : 0;1½ Þ � R2 ! R, the
process f t; x tð Þ; y tð Þð Þ obeys

df t;x tð Þ;y tð Þð Þ ¼
ft t;x tð Þ;y tð Þð Þþ fx t;x tð Þ;y tð Þð Þax t;x tð Þ;y tð Þð Þ

þfy t;x tð Þ;y tð Þð Þay t;x tð Þ;y tð Þð Þ

� �
dt

þ f t;x t�ð Þþbx �ð Þ;y t�ð Þð Þ� f t;x t�ð Þ;y t�ð Þð Þ½ �dqx tð Þ
þ f t;x t�ð Þ;y t�ð Þþby �ð Þ

� �
� f t;x t�ð Þ;y t�ð Þð Þ

� �
dqy tð Þ;

where we set bi �ð Þ � bi t; x t�ð Þ; y t�ð Þð Þ, i ¼ x; y.

As before, the ‘‘normal terms’’ include the partial derivatives ft, fx, and
fy . Whenever, for example, Poisson process qx tð Þ jumps, the corre-
sponding process x tð Þ increases by bx t; x t�ð Þ; y t�ð Þð Þ and the ‘‘jump

‘‘Itô’s Lemma’’ and the Bellman Equation 7
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term’’ makes the function jump from f t; x t�ð Þ; y t�ð Þð Þ to f t; x t�ð Þþð
bx �ð Þ; y t�ð ÞÞ. When qy tð Þ jumps, only y tð Þ increases. Observe that, even
though qx tð Þ and qy tð Þ are independent, the differentials dx tð Þ and dy tð Þ
and thus the processes x tð Þ and y tð Þ are in general not since the change of
each process depends through bi on the other process.

In light of the preceding results one can see why CVFs from standard
textbooks in economics may not be suitable for the applied model builder.
First of all, most authors, such as Merton (1990), consider merely uni-
variate processes with only one source of uncertainty, which may be
insufficient as our example in Subsect. 2.3 will show. Furthermore there
are CVFs that yield only approximations of the differential df . Malliaris
and Brock (1982, Proposition 12.1 on p. 122) provide the expected dif-
ference EDf only, but not the exact observable df . Another example is
given in Dixit and Pindyck (1994), going back probably to a misprint.
Readers should not be confused when comparing their CVF in Eq. (39)
on p. 85 with our statements presented above. The exact expression in
Dixit and Pindyck (1994), adapted to our notation, should read as stated
in the following corollary.

Corollary 3 (a single Poisson process): Consider a one-dimensional
stochastic process x tð Þ described by dx tð Þ ¼ a t; x tð Þð Þdt þ b t;ð x t�ð ÞÞ
dq tð Þ. Then, for a once continuously differentiable function f : 0;1½ Þ�
R ! R, the differential of the process f t; x tð Þð Þ reads:

df t; x tð Þð Þ ¼ ft t; x tð Þð Þ þ fx t; x tð Þð Þa t; x tð Þð Þ½ �dt

þ f t; x t�ð Þ þ b t; x t�ð Þð Þð Þ � f t; x t�ð Þð Þ½ �dq tð Þ:

2.2 Application I: The Budget Constraint

Most maximization problems require a constraint. For a household, this is
usually the budget constraint. We show here how the structure of the
budget constraint depends on the economic environment the household
finds itself in and how the CVF is used in this context.

Let wealth a tð Þ at time t be given by the number n tð Þ of stocks a
household owns times their price v tð Þ. That is, a tð Þ ¼ n tð Þv tð Þ. Let the
price follow a process that is exogenous to the household (but potentially
endogenous in general equilibrium),

8 K. Sennewald and K. Wälde
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dv tð Þ ¼ av tð Þdt þ bv t�ð Þdq tð Þ:

Hence, the price grows with the continuous rate a 2 R and at discrete
random times it jumps by b percent. In order to avoid negative prices we
assume b > �1. The random times are modeled by the jump times of a
Poisson process q tð Þ with arrival rate k, which is the probability that in
the current ‘‘period’’ a price jump occurs. The expected (or average)
growth rate is then given by aþ kb, cf. Appendix A.

Let the household earn dividend payments p tð Þ per unit of asset and
labor income w tð Þ. Let consumption expenditure be given by p tð Þc tð Þ,
where c tð Þ denotes the consumption quantity and p tð Þ the price of one
unit of the consumption good. If buying stocks is the only way of saving,
the number of stocks held by the household changes in a deterministic
way according to

dn tð Þ ¼ n tð Þp tð Þ þ w tð Þ � p tð Þc tð Þ
v tð Þ dt:

When savings n tð Þp tð Þ þ w tð Þ � p tð Þc tð Þ are positive, the number of
stocks held by the household increases by savings divided by the price of
one stock. When savings are negative, the number of stocks decreases.

The change of the household’s wealth, i.e., the household’s budget
constraint, is then obtained by applying CVF to a tð Þ ¼ n tð Þv tð Þ. Using
Corollary 1 with f t; x; yð Þ ¼ xy, we obtain

da tð Þ ¼ v tð Þ n tð Þp tð Þ þ w tð Þ � p tð Þc tð Þ
v tð Þ þ n tð Þav tð Þ

� �
dt

þ n t�ð Þ v t�ð Þ þ bv t�ð Þ½ � � n t�ð Þv t�ð Þ½ �dq tð Þ
¼ r tð Þa tð Þ þ w tð Þ � p tð Þc tð Þ½ �dt þ ba t�ð Þdq tð Þ;

ð3Þ

where the interest-rate is defined as r tð Þ � p tð Þ=v tð Þ þ a. This is a very
intuitive budget constraint: As long as the asset price does not jump,
i.e., dq tð Þ ¼ 0, the household’s wealth increases by current savings,
r tð Þa tð Þ þ w tð Þ � p tð Þc tð Þ, where the interest rate r tð Þ consists of
dividend payments in units of the asset price plus the deterministic
growth rate of the asset price. If a price jump occurs, i.e., dq tð Þ ¼ 1,
wealth jumps by b percent, which is the stochastic part of the overall
interest-rate.

‘‘Itô’s Lemma’’ and the Bellman Equation 9
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2.3 Application II: A Two-sector Economy

This subsection presents a derivation of a household’s budget constraint
in a more complex economic environment. We thereby obtain a two-
dimensional example for Corollary 2. Consider an economy consisting of
two sectors employing technologies X tð Þ ¼ A tð ÞKa

X tð ÞL1�a
X tð Þ and

Y tð Þ ¼ B tð ÞKa
Y tð ÞL1�a

Y tð Þ where K tð Þ ¼ KX tð Þ þ KY tð Þ is the economy’s

capital stock at time t and L ¼ LX tð Þ þ LY tð Þ its constant labor force. The
economy produces under perfect competition. Total factor productivity
(TFP) in both sectors is stochastic,

dA tð Þ
A t�ð Þ

¼ wAdt þ cAdqA tð Þ and
dB tð Þ
B t�ð Þ

¼ wBdt þ cBdqB tð Þ; ð4Þ

where the parameters wi and ci are constant and such that A tð Þ and B tð Þ
are non-decreasing in an expected sense, i.e., for any s > t, EtA sð Þ � A tð Þ
and EtB sð Þ � B tð Þ where Et denotes throughout the paper the expectation
conditional on time t. Given that capital and labor are instantaneously
mobile across sectors, factor prices wK tð Þ for capital and wL tð Þ for labor
are identical in both sectors. Thus, since technologies only differ in their
TFP level, we find from the equality of prices with marginal costs that the
relative price of goods reads

pX tð Þ
pY tð Þ ¼

B tð Þ
A tð Þ : ð5Þ

Capital is the only asset in which households can save. Capital ac-
cumulation is governed by dK tð Þ ¼ I tð Þ � dK tð Þ½ �dt, where the invest-
ment good industry assembles the goods X and Y to obtain new
production units, I tð Þ ¼ UX r

I tð ÞY 1�r
I tð Þ, given some constant U > 0.

XI tð Þ and YI tð Þ are the aggregate savings of the households in the goods
X and Y . When the investment good industry produces under perfect
competition as well, the price of one unit of the investment good is, for
a suitable choice of U,

pI tð Þ ¼ pr
X tð Þp1�r

Y tð Þ: ð6Þ

We now choose good Y tð Þ as numeraire. Real wealth of a typical
household, measured in units of Y tð Þ, is then given by

10 K. Sennewald and K. Wälde
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a tð Þ � pI tð Þk tð Þ
pY tð Þ ¼

pX tð Þ
pY tð Þ

� �r

k tð Þ; ð7Þ

where k tð Þ stands for capital per household. As in the previous example,
the change in k tð Þ is governed by the difference between income and
consumption expenditure, divided by the price of capital,

dk tð Þ ¼ wK tð Þk tð Þ þ wL tð Þ � pX tð ÞcX tð Þ � pY tð ÞcY tð Þ
pI tð Þ dt: ð8Þ

We can now compute the evolution of a tð Þ by using CVF. With (5) and
(7), a tð Þ can be expressed by a tð Þ ¼ B tð Þ=A tð Þ½ �rk tð Þ. The differential of
the TFP ratio B tð Þ=A tð Þ is obtained by applying CVF from Corollary 2 on
f x; yð Þ ¼ x=y and on the stochastic differentials in (4):

d
B
�
t
�

A
�
t
� ¼

�
wB � wA

�B
�
t
�

A
�
t
� dt þ

�
1

1þ cA
� 1

�
B
�
t�
�

A
�
t�
� dqA

�
t
�

þ cB
B
�
t�
�

A
�
t�
� dqB

�
t
�
:

ð9Þ

Then, using (5) and (6), we find with CVF from Corollary 1 applied on
f t; x; yð Þ ¼ yrx and the differentials (8) and (9) that the evolution of real
wealth is given by, cf. Appendix E,7

da tð Þ ¼ ra tð Þ þ wr
L tð Þ � cr tð Þ

� �
dt � 1� 1þ cAð Þ�r½ �a t�ð ÞdqA tð Þ

þ cB þ 1ð Þr�1½ �a t�ð ÞdqB tð Þ; ð10Þ

where r � r wB � wAð Þ þ wK tð Þ
pI tð Þ stands for the real interest rate,

wr
L tð Þ � wL tð Þ

pY tð Þ for real labor income, and cr tð Þ � pX tð ÞcX tð Þ
pY tð Þ þ cY tð Þ for real

consumption. Again, this budget is very intuitive. Recall that real wealth
is the value of the household’s capital holdings measured in units of the
consumption good Y , i.e., a ¼ pIk=pY . The real interest rate is thus given

by wK tð Þ
pI tð Þ , which is the rate of return of capital, expressed in units of capital,

the household receives for her investment in producing X and Y , and by

7 Appendices E–H can be found in the revised discussion paper version
Sennewald and Wälde (2006), which is available at www.waelde.com/
publications.html.
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r wB � wAð Þ, which is the continuous rate of change of the real capital
price pI=pY . The latter statement is a consequence of the relation
pI=pY ¼ pX tð Þ=pY tð Þ½ �r¼ B tð Þ=A tð Þ½ �r and the dynamics of A tð Þ and
B tð Þ: As A tð Þ and B tð Þ grow continuously at the rates wA and wB, re-
spectively, the relative price pX=pY changes, also continuously, at the rate
wB � wA, which in turn leads to a change of pI=pY at the rate r wB � wAð Þ.
A similar story applies to the ‘‘jump terms’’. A jump in one of the TFPs
A tð Þ and B tð Þ triggers a jump in the real capital price, thus leading to an
increase of wealth at the rate 1� 1þ cAð Þ�r½ � and cB þ 1ð Þr�1½ �, re-
spectively.

2.4 Application III: The Hamilton-Jacobi-Bellman Equation

In this subsection, we show how an appropriate HJB equation can be
heuristically derived if one faces a stochastic control problem. For all
practical purposes, this only requires the application of CVF.

Take a household trying to find an optimal consumption process c� tð Þ
that maximizes the expected lifetime utility,8

Et0

Z1

t0

e�q t�t0ð Þu c tð Þð Þdt; ð11Þ

subject to the budget constraint derived in Subsect. 2.2,

da tð Þ ¼ r tð Þa tð Þ þ w tð Þ � p tð Þc tð Þ½ �dt þ ba t�ð Þdq tð Þ; a t0ð Þ > 0: ð12Þ

As a starting point, we write the HJB equation in the general form as 9

qV t; a tð Þð Þ ¼ max
c tð Þ

u c tð Þð Þ þ 1

dt
EtdV t; a tð Þð Þ

	 

; ð13Þ

where the maximum is achieved by the optimal consumption choice c� tð Þ,
and V denotes the value function

V t; a tð Þð Þ � Et

Z1

t

e�q s�tð Þu c� sð Þð Þds;

8 Later, in the example presented in Sect. 3, we shall go further into detail
about the considered controls.
9 For a heuristic derivation see Appendix F or Malliaris and Brock (1982) and

Turnovsky (2000).
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which is the maximized expected lifetime utility in t given wealth a tð Þ.
The value function therefore gives the highest value, in units of utility, the
household can reach given an amount a tð Þ of wealth. The general HJB
equation (13) says that the household chooses consumption in t such that
she maximizes her instantaneous return from consumption, which con-
sists of the instantaneous utility flow u c tð Þð Þ plus the expected change
1
dt EtdV t; a tð Þð Þ in the value of wealth corresponding to the consumption
choice in t. It tells furthermore that the intertemporal return qV t; a tð Þð Þ
from holding a tð Þ is given by the return from the optimal consumption in
t, u c� tð Þð Þ þ 1

dt EtdV t; a tð Þð Þ. We see that, when determining the optimal
behavior at t, the household only needs to consider the value function at t
and its expected change in order to cover future behavior. This is a direct
result of Bellman’s principle of optimality, see, e.g., Bellman (1957) and
cf. also Appendix F.

Assume that V is once continuously differentiable. Obtaining the HJB
equation for a specific maximization problem then requires (i) application
of CVF on V t; a tð Þð Þ, (ii) computing expectations and (iii) ‘‘dividing’’ by
dt. With budget constraint (12) CVF from Corollary 3 yields

dV t; a tð Þð Þ ¼ Vt t; a tð Þð Þ þ Va t; a tð Þð Þ r tð Þa tð Þ þ w tð Þ � p tð Þc� tð Þ½ �f gdt

þ V t; 1þ bð Þa t�ð Þð Þ � V t; a t�ð Þð Þ½ �dq tð Þ:

Using Etdqt ¼ kdt, we get

EtdV t; a tð Þð Þ ¼ Vt t; a tð Þð Þ þ Va t; a tð Þð Þ r tð Þa tð Þ þ w tð Þ � p tð Þc� tð Þ½ �f gdt

þ k V t; 1þ bð Þa tð Þð Þ � V t; a tð Þð Þ½ �dt:

Dividing by dt gives finally the HJB equation for the maximization
problem consisting of (11) and (12):

qV t;a tð Þð Þ

¼ max
c tð Þ�0

u c tð Þð Þ þ Vt t;a tð Þð Þ þ Va t;a tð Þð Þ r tð Þa tð Þ þw tð Þ � p tð Þc� tð Þ½ �
þk V t; 1þ bð Þa tð Þð Þ � V t;a tð Þð Þ½ �

	 

:

ð14Þ

This approach is very practical, a rigorous background with the necessary
assumptions can be found in Sennewald (2006).
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3 A Typical Maximization Problem

We now present a maximization problem that consists in determining a
household’s optimal consumption and investment behavior. Finding
closed form expressions for the optimal controls is usually restricted to
special cases. Nevertheless, for optimum-consumption problems it is
usually possible to derive a Keynes-Ramsey rule. We show how this can
be achieved, making use of the HJB equation as a necessary criterion for
optimality. Then the closed form solution is presented. Its optimality is
verified by the fact that the HJB equation together with a certain terminal
condition is also a sufficient criterion for optimality.

3.1 The Problem

Consider a household that is endowed with some initial wealth a t0ð Þ > 0.
At each instant, the household can invest her wealth a tð Þ in both a risky
and a safe asset. The amount the household holds in the risky asset is
denoted by b tð Þ. Her investment in the safe asset is then a tð Þ � b tð Þ. The
price v1 tð Þ of one unit of the risky asset obeys the SDE

dv1 tð Þ ¼ r1v1 tð Þdt þ bv1 t�ð Þdq tð Þ; ð15Þ

where r1 2 R and b > 0. That is, the price of the risky asset grows at each
instant with a fixed rate r1 and at random points in time it jumps by b
percent. The randomness comes from the well-known Poisson process
q tð Þ with arrival rate k. The price v2 tð Þ of one unit of the safe asset is
assumed to follow:

dv2 tð Þ ¼ r2v2 tð Þdt; ð16Þ

where r2 � 0. Let the household receive a fixed wage income w and
spend c tð Þ � 0 on consumption.10 Then, in analogy to (3), the house-
hold’s budget constraint reads11

da tð Þ ¼ r1b tð Þ þ r2 a tð Þ � b tð Þ½ � þ w� c tð Þf gdt þ bb t�ð Þdq tð Þ: ð17Þ

10 Unlike in Subsects. 2.2 and 2.4, we consider here real variables expressed in
units of the consumption good.
11 An alternative approach to derive the budget constraint is to start with the

assumption of a ‘‘self-financing portfolio’’, a concept taken from finance, see
Appendix G.
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Let the household’s time preference rate be given by the constant q > 0
and assume that the planning horizon is infinite. Forming expectations
about future consumption streams and given the CRRA (constant relative
risk aversion) utility function

u cð Þ ¼ c1�r � 1

1� r
; r > 0; r 6¼ 1;12 ð18Þ

the household’s objective is given by maximizing the expected lifetime
utility,

Et0

Z1

t0

e�q t�t0ð Þu c tð Þð Þdt; ð19Þ

subject to the budget constraint (17). The time preference rate q is as-
sumed to be sufficiently high so that (19) is finite. In order to avoid a
trivial investment problem, we assume

r1 < r2 < r1 þ kb: ð20Þ

The guaranteed return r1 of the risky asset is lower than the return r2 of
the riskless asset, while the expected return r1 þ kb of the risky asset is
greater than r2. Note that this assumption implies that b > 0 which is
consistent with our assumption above.

The control variables of the household are the nonnegative consump-
tion stream c tð Þ and the amount b tð Þ invested in the risky asset. There
exist various types of controls that may be considered: Feedback controls
that depend on the whole history of a tð Þ, Markov controls that depend on
current time and wealth, or generalized controls that, roughly speaking,
do not depend on ‘‘anything’’ observable. Obviously, the class of Markov
controls is contained within the two other classes of controls which means
that Markov controls may yield a suboptimal performance. Nevertheless,
for the problem at hand, and in other applications where the constraint is

12 The following also applies to the special case r! 1, i.e., u cð Þ ¼ log c.
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Markovian as well,13 it is in general sufficient to focus on Markov con-
trols only since one obtains as good a performance with Markov controls
as with any other class of controls. But observe that, though being
extremely plausible, this result is technically not at all obvious. Many
authors address this issue and present corresponding theorems that prove
the optimal performance of Markov controls under mild conditions. See,
e.g., Sennewald (2006, Theorem 5) or, for a setup with Brownian motion,
Øksendal (2000, Theorem 11.2.3).

For now assume that there exist optimal Markov controls, denoted by
c� tð Þ and b� tð Þ, maximizing the expected lifetime utility (19) subject to
budget constraint (17). Then we define the value function V by

V a t0ð Þð Þ � Et0

Z1

t0

e�q t�t0ð Þu c� tð Þð Þdt:

Finding the optimal Markov controls and the value function can be
achieved by the HJB equation, which, derived as in Subsect. 2.4 or taken
from Sennewald (2006), reads

qV ðaÞ ¼ max
c�0;b

uðcÞ þ r1bþ r2 a� bð Þ þw� c½ �V 0 að Þ þ k V ~að Þ � V að Þ½ �f g;

ð21Þ

where ~a � aþ bb denotes the post-jump wealth if at wealth a a jump in
the risky asset price occurs. The maximum is attained by the optimal
Markov control values c� and b� corresponding to wealth a. The HJB
equation is under certain conditions both a necessary and sufficient cri-
terion for optimality. In the following subsections we show how either
property can be used to tackle the control problem.

3.2 The Keynes-Ramsey Rule

3.2.1 Preliminary Conditions

Making use of the fact that according to Sennewald (2006, Theorem 3)
the HJB equation is a necessary criterion for optimality, we derive in the

13 Roughly speaking, the constraint is Markovian if the change, i.e., the dif-
ferential, of the controlled process only depends on current variables and if the
underlying noise process is Markovian, cf. SDE (17).
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following a stochastic form of the Keynes-Ramsey rule. This rule tells us
how optimal consumption changes over time. Before turning to the actual
derivation in Subsect. 3.2.2, we first specify state and control space and
show that the conditions required in Sennewald (2006) are satisfied in our
example.

Let the state and control space be given as follows. Wealth is allowed
to become negative, but the debts shall always be covered by the
household’s lifetime labor income discounted with the safe interest rate
r2. That is, a tð Þ > �w=r2 for all t. Given this condition, it is only natural
to assume that consumption shall not exceed total wealth consisting of
current physical wealth plus the present value of future labor income,

0 � c tð Þ � a tð Þ þ w
r2
: ð22Þ

In addition, we do not allow short-selling of the risky asset, whereas, on
the other hand, the household can finance risky investment by short-
selling the safe asset.14 Again, the limit for this kind of borrowing is given
by lifetime labor income, i.e., a tð Þ � b tð Þ � �w=r2. Hence,

0 � b tð Þ � a tð Þ þ w
r2
: ð23Þ

Then the set of admissible controls contains all cádlág processes c tð Þ and
b tð Þ satisfying conditions (22) and (23) such that the associated wealth
process always remains above the level �w=r2. Assume that the optimal
Markov controls c� tð Þ and b� tð Þ are admissible.

So far, working with the HJB equation as a necessary criterion has
required, among other things, the boundedness of utility function (18) and
of the coefficients in budget constraint (17). Apparently, neither (17) nor
(18) do satisfy this condition. Sennewald (2006, Theorem 3) relaxes this
requirement and shows that linear boundedness suffices. That means we
can still use the HJB equation if we find constants l; pi; qi > 0, i ¼ 1; 2,
such that for all a > �w=r2 and admissible c and b

u cð Þj j � l cþ 1ð Þ; ð24Þ

14 Consider the safe asset as a bank account and observe that in many countries
short-selling of stocks is not allowed.
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r1bþ r2 a� bð Þ þ w� cj j � p1 aj j þ q1; ð25Þ

and

bbj j � p2 aj j þ q2: ð26Þ

In addition, the optimal controls c� and b� must be linearly bounded in a
too. That is, for some c > 0,

jj c�; b�ð Þkj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2 þ b�2

p
� c 1þ að Þ: ð27Þ

Using (22) and (23), we easily obtain (25) to (27) with
p1 ¼ max r2; 1� r1f g, q1 ¼ max w; 1� r1ð Þw=r2f g, p2 ¼ b, q2 ¼ bw=r2,

and c ¼
ffiffiffi
2
p

w=r2.15 Condition (24) is trivially met with l ¼ 1
1�r if the risk

aversion parameter r in utility function (18) is less than one. In the case of
log-utility or for r > 1, things are more complicated. Though bounded
from above,16 u cð Þ is not linearly bounded from below since it falls too
fast toward �1 as c tends to 0. We therefore assume that there exists a
threshold e > 0 below which the consumption expenditure never falls.
This assumption is justified if one recalls that marginal utility becomes
infinity as consumption tends to 0. Thus, zero-consumption can never be
optimal. Hence, if we choose e small enough, we find that utility is
bounded from below by ln e and e� r�1ð Þ � 1

� �
= 1� rð Þ, respectively.

Jointly with the (linear) boundedness from above, this immediately yields
(24) with l ¼ ln �j j for r ¼ 1 and l ¼ e� r�1ð Þ � 1

� �
= r� 1ð Þ for r > 1.

Beside the linear-boundedness conditions (24)–(27), a certain regularity
condition must hold, see Assumption (H4) in Sennewald (2006). But in
order to satisfy this technical condition, we merely need to assume a
sufficiently high time preference rate, namely q > q1 þ kq2, cf. Remark 1
(iii) in Sennewald (2006).17 Then, given that the value function is suffi-
ciently smooth, the HJB equation is a necessary criterion for optimality.

15 Note that if we had choosen as control variable the share of wealth invested
in the risky asset instead of the absolut amount b, Condition (27) could hardly be
satisfied.
16 ln c is linearly bounded from above by c, whereas an upper bound for c1�r�1

1�r ,
r > 1, is given by 1

r�1.

17 In any cases, q has to be high enough in order to ensure a finite objective
function (19). The regularity condition (H4), however, might require an even
higher q.
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3.2.2 Deriving the Keynes-Ramsey Rule

Since c� and b� maximize the right-hand side in the HJB equation (21),
the following first-order conditions must be satisfied if c� and b� are not
corner solutions with respect to the constraints (22) and (23):

u0 c�ð Þ ¼ V 0 að Þ ð28Þ

and

V 0 að Þ r1 � r2ð Þ þ kV 0 ~a�ð Þb ¼ 0; ð29Þ

where ~a� � aþ b�b denotes the post-jump wealth for the optimal in-
vestment behavior. Replacing according to (28) V 0 by u0 in Eq. (29)
yields:

u0 ~c�ð Þ
u0 c�ð Þ ¼

r2 � r1
kb

; ð30Þ

where ~c� denotes the optimal consumption choice corresponding to ~a�.
Hence, the ratio for optimal consumption after and before a jump is
constant:

~c�

c�
¼ kb

r2 � r1

� �1=r

: ð31Þ

Since by Assumption (20) the term on the right-hand side is greater than
one, this equation shows that consumption jumps upwards if a jump in the
risky asset price occurs. This result is not surprising since, if the risky
asset price jumps upwards, so does the household’s wealth.

In the next step, we compute the evolution of V 0 a� tð Þð Þ, where a� tð Þ
denotes the wealth process associated to the optimal consumption
and investment behavior. Assume that V is twice continuously dif-
ferentiable. Then, due to budget constraint (17), CVF from Corollary 3
yields

dV 0 a� tð Þð Þ ¼ r1b� tð Þ þ r2 a� tð Þ � b� tð Þ½ � þ w� c� tð Þf gV 00 a� tð Þð Þdt

þ V 0 ~a� t�ð Þð Þ � V 0 a� t�ð Þð Þ½ �dq tð Þ: ð32Þ
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On the other hand, differentiating the maximized HJB equation (21)
evaluated at a� tð Þ yields under application of the envelope theorem

qV 0ða�
�
t
�
Þ ¼

�
r1b� tð Þ þ r2 a� tð Þ � b� tð Þ½ �
þ w� c� tð ÞgV 00ða� tð ÞÞ þ r2V 0 a� tð Þð Þ
þ k V 0 ~a� tð Þð Þ � V 0 a� tð Þð Þ½ �:

Rearranging gives

r1b� tð Þ þ r2 a� tð Þ � b� tð Þ½ � þ w� c� tð Þf gV 00ða� tð ÞÞ
¼ qV 0ða� tð ÞÞ � r2V 0 a� tð Þð Þ � k V 0 ~a� tð Þð Þ � V 0 a� tð Þð Þ½ �:

Inserting this expression into (32) yields

dV 0 a� tð Þð Þ ¼ q� r2ð ÞV 0 a� tð Þð Þ � k V 0 ~a� tð Þð Þ � V 0 a� tð Þð Þ½ �f gdt

þ V 0 ~a� t�ð Þð Þ � V 0 a� t�ð Þð Þ½ �dq tð Þ:

Replacing, according to the first-order condition (28) for optimal con-
sumption, V 0 by u0 we obtain:

du0 c� tð Þð Þ ¼ q� r2ð Þu0 c� tð Þð Þ � k u0 ~c� tð Þð Þ � u0 c� tð Þð Þ½ �f gdt
þ u0 ~c� t�ð Þð Þ � u0 c� t�ð Þð Þ½ �dq tð Þ:

Applying now the CVF from Corollary 3 to f xð Þ ¼ u0ð Þ�1 xð Þ leads to the
Keynes-Ramsey rule for general utility functions u,

� u00 c�ð Þ
u0 c� tð Þð Þ dc� tð Þ ¼ r2 � q� k 1� u0 ~c� tð Þð Þ

u0 c� tð Þð Þ

� �	 

dt

� ~c� t�ð Þ � c� t�ð Þ½ � u00 c�ð Þ
u0 c� tð Þð Þ dq tð Þ:

For the CRRA utility function as given as in (18) we get by eliminating
u0 ~c�t
� �

according to (30) and ~c�t according to (31)

dc� tð Þ
c� t�ð Þ

¼ 1

r
r2�k 1�r2�r1

kb

� �
�q

� �
dtþ kb

r2�r1

� �1=r

�1
" #

dq tð Þ: ð33Þ

The optimal change in consumption can thus be expressed in terms of
well-known parameters. As long as the price of the risky asset does not
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jump, optimal consumption grows constantly by the rate

r2 � k 1� r2�r1
kb


 �
� q

h i�
r. The higher the risk-free interest rate r2 and

the lower the guaranteed interest rate r1 of the risky asset, the discrete
growth rate b, the probability of a price jump k, the time preference rate
q, and the risk aversion parameter r, the higher becomes the consumption
growth rate. When the risky asset price jumps, consumption jumps as

well to its new higher level c� tð Þ ¼ kb
r2�r1


 �1=r
c� t�ð Þ. Here the growth rate

depends positively on k, b, and r1, whereas r2 and r have negative
influence. A detailed discussion about the impact of risk on the average
consumption growth is provided in Subsect. 3.4.2.

3.3 A Closed Form Solution

3.3.1 General Approach: Guessing the Value Function

A Keynes-Ramsey rule describes ‘‘only’’ the optimal change in con-
sumption over time. In the following we present a closed form solution,
which tells us explicitly how to choose optimal consumption and in-
vestment levels. Obtaining closed form expressions for the optimal con-
trols and the value function is not obvious.18 Looking for them has a long
tradition in finance (see, e.g., Merton, 1969, 1971, or Framstad et al.,
2001) and also in macroeconomics (see, e.g., Wälde, 1999a). Finding a
closed form solution is in general the result of an ‘‘educated guess’’. That
means, we consider already solved optimization problems that are similar
to ours and try to deduce a solution from them. Chang (2004) devotes an
entire chapter on how to derive value functions in various setups with
Brownian motion. After having found a candidate for a solution, it has to

18 Unfortunately, finding explicit expressions for the optimal controls is rather
the exception. In more general setups, for example, with non-constant interest
rates (which are typical when modeling transitional dynamics or when con-
sidering macroeconomic models of growth for non AK-type economies) closed-
form solutions can only be derived if certain parameter restriction are met, see,
e.g., Wälde (2005) and the references therein. The same holds if labor income is
stochastic or if the capital market is imperfect, see, e.g., van der Ploeg (1993) (for
a discrete-time setup) or Duffie, Fleming, Soner, and Zariphopoulou (1997).
Deriving a Keynes-Ramsey rule along the lines of Subsect. 3.2 should, however,
always be possible.

‘‘Itô’s Lemma’’ and the Bellman Equation 21



www.manaraa.com

be verified. To this end, one can use a so called verification theorem. Such
a theorem tells us that, if the candidate for the optimal solution solves the
HJB equation and if furthermore certain limiting conditions are satisfied,
the candidate is indeed optimal, cf. Sennewald (2006, Theorem 4). In
other words, the HJB equation is a sufficient criterion for optimality.
Interestingly, unlike necessity this sufficiency property does not require
any boundedness conditions on the primitives at all.

From similar consumption and investment problems in Merton (1969;
1971) and elsewhere we can guess that the value function is of the
form:

J að Þ ¼ C1 aþ C2½ �1�r�C3

1� r
ð34Þ

with unknown constants C1;C2, and C3. In the following steps, this rather
vague expression for the candidate of the value function is used to derive
the optimal consumption and investment behavior as well as explicit
expression for C1, C2 and C3.

3.3.2 Deriving and Verifying Optimal Consumption and Investment

Let the state space again be given by all a > �w=r2, while for the mo-
ment the control space constraints (22) and (23) are relaxed to c � 0 and
b 2 R. Starting from the candidate for the value function in (34) and
using the verification Theorem 4 in Sennewald (2006), we show how the
optimal consumption and investment behavior can be both derived and
verified at the same time. The proceeding consists of two steps:

(1) Does the candidate for the value function solve the HJB equation

qJðaÞ ¼ max
fc�0;b2Rg

uðcÞþ r1bþ r2 a�bð Þþw� c½ �J 0 að Þþk J ~að Þ� J að Þ½ �f g

ð35Þ

and is the maximum in (35) attained by the candidates for the optimal
controls, c� and b�?

(2) Are the limiting conditions

lim
t!1

Et0 e�qtJ a� tð Þð Þ½ � ¼ 0 ð36Þ
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and

lim
t!1

Et0 e�qtJ a tð Þð Þ½ � � 0 ð37Þ

satisfied, where a tð Þ denotes the wealth process associated to an arbitrary
admissible Markov control?

At first, we derive in step (1) the constants C1;C2;C3 and the candidates
for the optimal controls such that HJB equation (35) holds. Then we show
in Step (2) that these candidates satisfy limiting conditions (36) and (37).

Step (1): (Cf. also Sennewald, 2006, Corollary 4) Since the right-hand
side of the HJB equation (35) is strictly concave in c and b, the HJB
equation holds if the following two points are satisfied: (a) The candidates
for the optimal controls solve the first-order conditions for the maximum
on the right-hand side in (35); (b) The candidates for the optimal controls
yield equality in (35).

Point (a) makes sure that c� and b� maximize the right-hand side in
(35). If in addition point (b) is satisfied, we can conclude that the HJB
equation holds.

ad a) The first-order conditions read (cf. also (28) and (29))
u0 c�ð Þ ¼ J 0 að Þ and J 0 að Þ r1 � r2ð Þ þ kJ 0 ~a�ð Þb ¼ 0. Rearranging the latter

equation yields aþ C2ð Þ�r r2 � r1ð Þ ¼ k aþ bb� þ C2ð Þ�rb. Therefore,

the optimal consumption must be

c� ¼ C
�1

r
1 aþ C2ð Þ; ð38Þ

and the optimal share invested in the risky asset is

b� ¼ 1

b
kb

r2 � r1

� �1
r

�1
" #

aþ C2ð Þ: ð39Þ

ad b) Inserting (38) and (39) into the maximized HJB equation (35)
gives unique expressions for C1;C2, and C3, such that finally the candi-
date for the value function reads 19;20

19 More precisely, C1, C2, and C3 follow by a comparison of coefficients, see
Appendix H or, for a setup with Brownian motion, Chang (2004, Chap. 5).

20 In case of log-utility we obtain w ¼ q and V að Þ ¼ 1
q

�
ln aþ w

r2


 �
þ

lnq� 1þ
k

r2�r1
kb �1þln

kb
r2�r1


 �
þr2

q

�
:
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J að Þ ¼
1
wr aþ w

r2


 �1�r
� 1

q

1� r
; ð40Þ

with the constant

w ¼ 1

r
qþ kð Þ � 1� r

r
r2 þ

r2 � r1
b

� �
� k

kb
r2 � r1

� �1�r
r

: ð41Þ

Thus, according to (38), optimal consumption must obey

c� ¼ w aþ w
r2

� �
; ð42Þ

whereas, by (39), the optimal amount held in the risky asset can only be

b� ¼ 1

b
kb

r2 � r1

� �1
r

�1
" #

aþ w
r2

� �
: ð43Þ

Note that total wealth aþ w=r2 is according to state space constraint
a > �w=r2 always positive. Thus, in order to derive economically
meaningful solutions, we require w to be positive, too. That means the
time preference rate must be high enough, namely, after rearranging (41),
such that

q > 1� rð Þr2 þ
r2 � r1

b
r

kb
r2 � r1

� �1
r

�1
" #

� kb
r2 � r1

� 1

� �( )
: ð44Þ

Using Lemma 2 in Appendix B, we find that the right-hand side is ne-
gative iff r > 1, zero iff r ¼ 0, and positive iff r < 1. Thus, if r � 1,
(44) is trivially satisfied for any q > 0.

Notice that with (42) and (43), we have derived the (only) controls
corresponding to the guessed value function (34) that maximize the HJB
equation. Thus, if now the terminal conditions in step (2) are satisfied, we
know that these controls are optimal.

Step (2): This step requires some calculation. At first, we check limiting
condition (36). Due to the shape of J as given as in (40), it suffices to
show that
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lim
t!1

e�qtEt0 a� tð Þ þ w
r2

� �1�r

¼ 0: ð45Þ

To this end, we derive an explicit expression for a� tð Þ þ w=r2½ �1�r. Ac-
cording to CVF in Corollary 3, the total wealth process a� tð Þ þ w=r2
obeys budget constraint (17) with starting point a t0ð Þ þ w=r2. Inserting
the candidates for optimal consumption and investment from (42) and
(43) into the budget constraint yields

d a� tð Þ þ w
r2

� �
¼ g1 a� tð Þ þ w

r2

� �
dt þ g2 a� t�ð Þ þ

w
r2

� �
dq tð Þ;

where g1 ¼ 1
r r2 � k 1� r2�r1

kb


 �
� q

h i
and g2 ¼ kb

r2�r1


 �1
r�1. The solution

of this linear stochastic differential equation reads (see Garcia and Griego,
1994)

a� tð Þ þ w
r2
¼ a t0ð Þ þ

w
r2

� �
expg1 t�t0ð Þþln 1þg2ð Þq tð Þ :

Using that for any Poisson distributed random variable X with parameter

k, E expaXþb ¼ expk expb �1ð Þþa, we find further

Et0 a� tð Þ þ w
r2

� �1�r

¼ a t0ð Þ þ
w
r2

� �1�r

exp 1�rð Þg1þk 1þg2ð Þ1�r�1½ �f g t�t0ð Þ :

Therefore, (45) and thus (36) as well are satisfied if and only if

q > 1� rð Þg1 þ k 1þ g2ð Þ1�r�1
h i

:

Inserting g1 and g2 and rearranging shows that this parameter constella-
tion is already met by (44). The limiting condition (36) is hence satisfied.
This connection between positive consumption and limiting condition
(36) was also found by Merton (1990) in a revised version of his paper
from 1969 for the case with Brownian motion as noise.

It remains to be shown that limiting inequality (37) holds for any
arbitrary admissible Markov control. For the case 0 < r < 1, we use that
the candidate for the value function (40) is always greater than

� q 1� rð Þ½ ��1. Therefore, lim
t!1

Et0 e�qtJ a tð Þð Þ½ � � � lim
t!1

e�qt

q 1�rð Þ ¼ 0 is
trivially satisfied.
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For r � 1, finding a lower bound for J a tð Þð Þ is less simple since we
can not rule out that J a tð Þð Þ approaches �1, which happens if a tð Þ
approaches the boundary of the state space, �w=r2. Thus, for (37) to be
satisfied, we have to show that J a tð Þð Þ tends to �1 with a rate less than
q. To this end, we first derive the lowest a tð Þ the household can achieve.
Assume without loss of generality that the household is in debt, a tð Þ < 0.
Now, introducing again control space constraints (22) and (23), one can
show easily that the infinitesimal change of a tð Þ is always greater than
� 1� r1ð Þ a tð Þ þ w=r2½ �. Thus, using a comparison principle as, e.g.,
Bassan et al. (1993, Corollary 3.5), we conclude that a tð Þ � ~a tð Þ, where
~a tð Þ is the solution of d~a tð Þ ¼ � 1� r1ð Þ ~a tð Þ þ w=r2½ �dt, ~a t0ð Þ ¼ a t0ð Þ.
Solving this linear differential equation yields ~a tð Þ ¼ 1� w=r2ð Þ
e� 1�r1ð Þ t�t0½ �a t0ð Þ � w=r2. Hence,

lim
t!1

Et0 e�qtJ a tð Þð Þ½ � � lim
t!1

e�qtJ ~a tð Þð Þ

¼ �
1� w

r2


 �
a t0ð Þ

h i� r�1ð Þ
e�qt0

r� 1ð Þwr

lim
t!1

e� q� r�1ð Þ 1�r1ð Þ½ � t�t0½ �:

Thus, for limiting condition (37) to be satisfied, we need again a suffi-
ciently high time preference, namely q > r� 1ð Þ 1� r1ð Þ. The latter
condition completes the verification, and the derived candidates (42) and
(43) for the optimal controls are indeed optimal.

Summarizing, verification only required the time preference rate to be
high enough. For the case r � 1 we introduced again control space
constraints (22) and (23). It remains to be shown that for r � 1 the
optimal controls indeed satisfy these constraints. Inserting the expression
(42) and (43) for optimal consumption and investment into (22) and (23),
respectively, shows that for this purpose we need merely to assume that
w � 1 and that kb= r2 � r1ð Þ � 1þ bð Þr. The first condition is only
natural since otherwise consumption was permanently higher than total
wealth. The latter inequality means that the expected return kb from a
jump in the risky asset price shall not exceed the ‘‘opportunity costs’’
r2 � r1 for investment in the risky asset too much. Then, the household is
not willing to borrow more than her total wealth aþ w=r2 to finance risky
investment.
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Finally, there is still one interesting point that shall be addressed,
namely the uniqueness of the derived solution c�, b�, and J . First, since
we know by the preceding verification that J in (40) is equal to the value
function V , uniqueness of J follows directly from the uniqueness of V ,
which is due to its definition on page 16. Then we use that the value
function and any set of optimal Markov controls satisfy according to
Subsect. 3.2 necessarily the HJB equation. Thus, optimal controls are
associated to J by the first-order conditions (28) and (29) for maximizing
the HJB equation. Now, since u0 and J 0 in (28) and (29) are monotone
(and unique), these first-order conditions pin-down uniquely the optimal
controls c� and b� as presented in (42) and (43).

3.4 Economic Insights

3.4.1 General Results

Both optimal consumption (42) and optimal investment (43) are constant
fractions of total wealth, aþ w=r2. The household thus does not relate
optimal consumption and investment only to current physical wealth but
also to lifetime labor income. This result is in line with the findings
derived by, e.g., Merton (1971) for Brownian motion as noise.

What has not been stressed before is that this implies a behavior that
seems somehow paradox in light of the household’s (constant relative)
risk aversion: First, if the household is poor or in debt (a very low or
negative), consumption exceeds physical wealth and the household runs
(further) into debt. Second, dividing (43) by a shows that the lower
physical wealth, the higher the share b�=a of physical wealth invested in
the risky asset. In addition, when being very poor or being in debt, the
optimally behaving household ‘‘borrows’’ (even more) by short-selling
the risk-free asset in order to finance risky investment (a� b� < 0).
However, in either case, the households can act in that way as he knows
that future wage income is used to repay the debt.

3.4.2 Risk and Consumption Growth

In the following we consider the impact of uncertainty on average con-
sumption growth. Uncertainty is measured by the variance of the sto-
chastic component, which is the price v1 tð Þ of the risky asset given by
SDE (15). We must thus change parameters in such a way that the
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variance of v1 tð Þ rises while its expectation remains unaltered. In other
words, we consider a mean preserving spread.

Following Appendix A, expectation of v1 tð Þ is given by

E0v1 tð Þ ¼ v1 t0ð Þ exp r1þkbð Þ t�t0ð Þ; ð46Þ

and variance by Var0v1 tð Þ ¼ E0v1 tð Þ½ �2 expkb2 t�t0ð Þ �1
h i

. A mean preser-

ving spread can thus be achieved by an increase of the randomly oc-
curring price jump b to jb, where j > 1, and by a simultaneous decrease
of the frequency of such a price jump, i.e., by reducing the arrival rate k to
k=j.21 Then the expectation of the new price process, which shall be
denoted by vj

1 tð Þ, is identical to (46), while the variance increases to

Var0vj
1 tð Þ ¼ E0v1 tð Þ½ �2 expjkb2 t�t0ð Þ �1

h i
> Var0v1 tð Þ; j > 1:

The household’s response to higher risk, captured by j > 1, is a re-
allocation of his portfolio toward the risk-free asset (a result easily de-
rived by considering b� in (43)) and, as shown in Appendix B, an increase
(decrease) of his consumption level in case of low risk aversion, i.e.,
r < 1 (high risk aversion, i.e., r > 1), whereas for r ¼ 1 consumption
expenditure remains unchanged at c� ¼ q aþ w=r2ð Þ. Thus, only in case
of high risk aversion (r > 1) the household has a motive for precau-
tionary saving. The result on b� does not require further explanation in
light of the household’s risk aversion. Neither does the consumption shift
since the mechanism behind it, though for different settings, is well-
known and extensively discussed by many authors. Take, for example
Merton (1969), who analyzes uncertainty from Brownian motion, or
Sandmo (1970), who considers an one-asset consumption problem in
discrete time. They show that in case of low risk aversion (r < 1) the
intertemporal substitution effect dominates the income effect, while the
contrary holds true for r > 1. If r ¼ 1, both effects offset each other.

As the latter statements show, the total effect of risk on the average
consumption growth is not obvious, at least not for the empirical relevant
case r > 1. In order to find out whether consumption growth accelerates
or slows down, we consider Keynes-Ramsey rule (33) applied on the

21 This is an alternative to Steger (2005) who uses two symmetric Poisson
processes instead of one here. He obtains higher risk at an invariant mean by
increasing the symmetric jump size.
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optimal consumption process c�j tð Þ that is associated to risk parameter j.
Forming expectation yields the average growth rate of c�j tð Þ,

g jð Þ � dE0c�j tð Þ
dtE0c�j tð Þ ¼

1

r
r2 �

k
j

1� r2 � r1
kb

� �
� q

� �
þ k

j
kb

r2 � r1

� �1
r

�1
" #

:

ð47Þ

The change of consumption growth g0 in response to increasing risk is
then simply derived by differentiating the latter expression with respect to
j, which yields evaluated at j ¼ 1

g0 � g0 1ð Þ ¼ k
r

1� r2 � r1
kb

� �
� k

kb
r2 � r1

� �1
r

�1
" #

: ð48Þ

Appendix C shows that g0 < 0. Hence, increasing risk leads to lower
expected consumption growth for any level of risk aversion. In particular,
in case of log-utility, the average consumption growth is lower under
uncertainty than in the corresponding deterministic setting, despite the
identical consumption rule c� ¼ q aþ w=r2ð Þ.

3.4.3 Precautionary Saving and Reallocation

We now distinguish between two channels through which uncertainty
influences growth, the precautionary saving effect g0prec and the portfolio-
reallocation effect g0reallo. It turns out that the impact of the precautionary
saving effect is ambiguous, depending on the household’s risk aversion,
while reallocation always implies lower average consumption growth.
More precisely, we find that in case of low risk aversion (r < 1), the
precautionary saving effect is negative and amplified by the reallocation
effect, whereas if risk aversion is high (r > 1), the precautionary saving
effect is positive and dominated by the reallocation effect. In case of log-
utility (r ¼ 1) the decrease in the expected consumption growth is en-
tirely due to portfolio reallocation.

We can identify the precautionary saving effect by considering ex-
pected growth of the optimal consumption process c�j;prec tð Þ that is ob-

tained upon eliminating the reallocation effect. That means, c�j;prec tð Þ is
the solution of an optimum-consumption problem in which the household

cannot reallocate her portfolio or, in other words, in which for all j > 1
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the amount held in the risky asset is given by b� from (43). The corre-

sponding Keynes-Ramsey rule is derived in Appendix D, Eq. (56).

Forming expectation yields the expected ‘‘precautionary consumption

growth’’

gprec jð Þ �
dE0c�j;prec tð Þ=dt

E0c�j;prec tð Þ ¼ � 1

r
q� rð Þ � k

j
1þ jbcð Þ1�r�1

h i	 

;

þ kbc;

ð49Þ

where c � 1
b

kb
r2�r1


 �1
r�1

� �
. Differentiating with respect to j, replacing c,

and evaluating the derived expression at j ¼ 1 leads to the precautionary
saving effect,

g0prec � g0prec 1ð Þ ¼ k
r

1� r2 � r1
kb

� �
� k

kb
r2 � r1

� �1
r

�1
" #

r2 � r1
kb

: ð50Þ

Rearranging shows that g0prec < 0 iff r kb
r2�r1


 �1
r�1

� �
> kb

r2�r1
� 1, which in

turn holds true iff r < 1, see Lemma 2 in Appendix B. Analogously we

obtain for r > 1, g0prec > 0 and for r ¼ 1, g0prec ¼ 0. Thus, if risk aversion

is low (high), increasing risk leads to lower (higher) consumption growth
induced by precautionary saving, whereas, if r ¼ 1, it has no impact on
the consumption growth that is due to precautionary saving at all. These
findings mirror the aforementioned result on the impact of uncertainty on
the optimal consumption rule.

The reallocation effect g0reallo is now obtained by the difference
g0 � g0prec, which reads with (48) and (50)

g0reallo ¼ k
kb

r2 � r1

� �1
r

�1
" #

r2 � r1
kb

� 1

� �
:

According to Assumption (20), this expression is always negative which
means that reallocation due to increasing uncertainty lowers average
consumption growth. This result is not surprising in view of the afore-
mentioned reallocation toward the risk-free asset since as a consequence
the average return of wealth declines.
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4 Conclusion

This paper has given examples of how the CVF and the HJB equation can
be used to analyze optimal behavior in an optimal control setup of
Poisson uncertainty. When a closed form solution for optimal behavior is
available, further analysis is straightforward. When only a Keynes-
Ramsey rule can be derived, further analysis can use, e.g., phase diagrams
to understand properties of optimal behavior.

The presented derivations and results should apply in different setups
with Poisson processes as well. The principles of deriving a Keynes-
Ramsey rule or closed form solutions, when available, remain the same.

We assumed throughout the paper independency of the underlying
Poisson processes. A more realistic modeling, however, might require
correlated processes. A derivation of CVF and HJB equation for such
setups is left for further research.

Appendix A

Expectation and Variance of a Risky Asset

Taking expectation on the differential (15) of the risky asset price v1 tð Þ
yields dE0v1 tð Þ ¼ r1 þ kbð ÞE0v1 tð Þdt. The expected return is thus r1 þ kb
and the expected price level at time t reads

E0v1 tð Þ ¼ v1 t0ð Þe aþkbð Þ t�t0ð Þ: ð51Þ

In order to calculate the second moment E0v21 tð Þ, we apply the CVF from

Corollary 3 on f xð Þ ¼ x2 and differential (51) to find that

dv21 tð Þ ¼ 2av21 tð Þdt þ b2 þ 2b
� �

v21 t�ð Þdqt. Taking expectation and sol-

ving the resulting differential equation for E0v21 tð Þ gives

E0v21 tð Þ ¼ v21 t0ð Þe 2aþk b2þ2bð Þ½ � t�t0ð Þ. Combining the latter equation with

(51) yields finally Var0v1 tð Þ ¼ E0v1 tð Þ½ �2 ekb2 t�t0ð Þ � 1
h i

. For more on

expectations and higher moments, see, e.g., Wälde (2006, Chap. 9).

Appendix B

Risk and the Optimal Consumption Rule

First of all we state the following lemma, which shall be of use
throughout the paper.
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Lemma 2: Let x > 1 be an arbitrary real number. Then the following
inequalities holds true:

ln xþ 1

x
> 1 ð52Þ

and

r x
1
r � 1


 � > x� 1 if 0 < r < 1
¼ x� 1 if r ¼ 1
< x� 1 if r > 1

(
: ð53Þ

Proof: Differentiating the left-hand side of (52) with respect to x yields
1
x � 1

x2, which is clearly positive for x > 1. Hence, since the left-hand side

is equal to the right-hand side for x ¼ 1, inequality (52) holds true.

Consider now (53). For r ¼ 1 the assertion follows immediately. In
order to prove the result for r 6¼ 1 we differentiate the left-hand side with

respect to r, which gives x
1
r � 1� x

1
r ln x

1
r. Upon dividing by x

1
r, (52)

shows that this derivation is negative for all r > 0. The left-hand side in
(53) is thus greater (less) than the right-hand side for r < 1 (r > 1),
which finishes the proof. h

We now turn to the impact of risk, captured by j, on the consumption
expenditure. According to (42) the optimal level of consumption ex-
pressed as a function of j reads

c� jð Þ ¼ 1

r
qþ k

j

� �
� 1� r

r
r2 þ

r2 � r1
jb

� �
� k

j
kb

r2 � r1

� �1�r
r

" #
aþ w

r2

� �
:

Differentiating with respect to j yields

c�0 jð Þ ¼ � 1

r
k
j2
þ 1� r

r
r2 � r1
j2b

� �
þ k

j2

kb
r2 � r1

� �1�r
r

" #
aþ w

r2

� �
:

Rearranging shows that c�0 jð Þ > 0 iff r kb
r2�r1


 �1
r�1

� �
> kb

r2�r1
� 1.

Following (53) in Lemma 2, we find that this inequality holds true iff
r < 1, and we can conclude that c�0 jð Þ > 0 for r < 1, c�0 jð Þ ¼ 0 for
r ¼ 1, and c�0 jð Þ < 0 for r > 1.
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Appendix C

Risk and the Optimal Consumption Growth

We show that the average consumption growth g jð Þ is decreasing in j.
Differentiating (47) gives upon rearranging that g0 jð Þ < 0 iff

1
r 1� r2�r1

kb


 �
� exp

1
r ln

kb
r2�r1


 �

�1
" #

< 0. Using the power series expan-

sion of the exponential function and taking into account that due to (20),

kb
r2�r1

> 1, we find that the latter inequality is satisfied if

1� r2�r1
kb


 �
� ln kb

r2�r1


 �
< 0. As by (52) from Lemma 2 this inequality

holds always true, we conclude that g0 jð Þ < 0.

Appendix D

The Precautionary Saving Effect

The precautionary saving effect is obtained by fixing the household’s
portfolio composition when increasing risk. That is, for all j > 1 the
amount bj held in the risky asset is given by the optimal amount b� from
(43) for the original setup. Thus,

bj ¼ b� ¼ c aþ w
r2

� �
; ð54Þ

where c � 1
b

kb
r2�r1


 �1
r�1

� �
. The corresponding optimal consumption

process c�j;prec tð Þ is then given as the solution of the maximization

problem maxc tð Þ�0 Et0

R1

t0

e�q t�t0ð Þu c tð Þð Þdt subject to dA tð Þ ¼

rA tð Þ � c tð Þ½ �dt þ jbcA t�ð Þdqj tð Þ, where A tð Þ stands for the total wealth

process a tð Þ þ w=r2, r for the constant deterministic return cr1þ
1� cð Þr2, and qj tð Þ for a Poisson process with arrival rate k=j:22 In
analogy to Subsect. 3.2 we derive the corresponding Keynes-Ramsey
rule,

22 The budget constraint is derived by inserting bj from (54) into the original
budget constraint (17), recollecting terms, and then using CVF on a tð Þ7!A tð Þ.
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dc�j;prec tð Þ
c�j;prec t�ð Þ

¼ � 1

r
q� rð Þ � k

j
1þ jbcð Þ

c�j;prec tð Þ
~c�j;prec tð Þ

 !r

�1
" #( )

dt

þ
~c�j;prec t�ð Þ
c�j;prec t�ð Þ

� 1

" #
dqj tð Þ; ð55Þ

where ~c�j;prec tð Þ stands for the still unknown optimal consumption
decision for 1þ jbcð ÞA tð Þ, i.e., after a jump of qj tð Þ has taken place. In

order to derive a suitable expression for the ratio
~c�j;prec tð Þ
c�j;prec tð Þ we use the same

methods as in Subsect. 3.3 to obtain the optimal consumption rule

c�j;prec Að Þ ¼ q� 1� rð Þr � k
j 1þ jbcð Þ1�r�1
h in o

A=r, which is linear

in A. Thus,
~c�j;prec tð Þ
c�j;prec tð Þ ¼ 1þ jbc and Keynes-Ramsey rule (55) can be

rewritten to

dc�j;prec tð Þ
c�j;prec t�ð Þ

¼ � 1

r
q� rð Þ � k

j
1þ jbcð Þ1�r�1

h i	 

dt þ jbcdqj tð Þ:

ð56Þ
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